B Probability distributions

Name parameters support pdf/pmf mean variance
Bernoulli \(p \in [0,1]\) \(k \in \{0,1\}\) \(p^k (1 - p)^{1 - k}\)
1.12
\(p\)
7.1
\(p(1-p)\)
7.1
binomial \(n \in \mathbb{N}\), \(p \in [0,1]\) \(k \in \{0,1,\dots,n\}\) \(\binom{n}{k} p^k (1 - p)^{n - k}\)
4.4
\(np\)
7.2
\(np(1-p)\)
7.2
Poisson \(\lambda > 0\) \(k \in \mathbb{N}_0\) \(\frac{\lambda^k e^{-\lambda}}{k!}\)
4.6
\(\lambda\)
7.3
\(\lambda\)
7.3
geometric \(p \in (0,1]\) \(k \in \mathbb{N}_0\) \(p(1-p)^k\)
4.5
\(\frac{1 - p}{p}\)
7.4
\(\frac{1 - p}{p^2}\)
9.3
normal \(\mu \in \mathbb{R}\), \(\sigma^2 > 0\) \(x \in \mathbb{R}\) \(\frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x - \mu)^2}{2 \sigma^2}}\)
4.12
\(\mu\) 7.8 \(\sigma^2\) 7.8
uniform \(a,b \in \mathbb{R}\), \(a < b\) \(x \in [a,b]\) \(\frac{1}{b-a}\)
4.9
\(\frac{a+b}{2}\) \(\frac{(b-a)^2}{12}\)
beta \(\alpha,\beta > 0\) \(x \in [0,1]\) \(\frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{\text{B}(\alpha, \beta)}\)
4.10
\(\frac{\alpha}{\alpha + \beta}\) 7.6 \(\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}\) 7.6
gamma \(\alpha,\beta > 0\) \(x \in (0, \infty)\) \(\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1}e^{-\beta x}\)
4.11
\(\frac{\alpha}{\beta}\)
7.5
\(\frac{\alpha}{\beta^2}\)
7.5
exponential \(\lambda > 0\) \(x \in [0, \infty)\) \(\lambda e^{-\lambda x}\)
4.8
\(\frac{1}{\lambda}\)
7.7
\(\frac{1}{\lambda^2}\)
7.7
logistic \(\mu \in \mathbb{R}\), \(s > 0\) \(x \in \mathbb{R}\) \(\frac{e^{-\frac{x - \mu}{s}}}{s(1 + e^{-\frac{x - \mu}{s}})^2}\)
4.13
\(\mu\) \(\frac{s^2 \pi^2}{3}\)
negative binomial \(r \in \mathbb{N}\), \(p \in [0,1]\) \(k \in \mathbb{N}_0\) \(\binom{k + r - 1}{k}(1-p)^r p^k\)
4.7
\(\frac{rp}{1 - p}\)
9.2
\(\frac{rp}{(1 - p)^2}\)
9.2
multinomial \(n \in \mathbb{N}\), \(k \in \mathbb{N}\) \(p_i \in [0,1]\), \(\sum p_i = 1\) \(x_i \in \{0,..., n\}\), \(i \in \{1,...,k\}\), \(\sum{x_i} = n\) \(\frac{n!}{x_1!x_2!...x_k!} p_1^{x_1} p_2^{x_2}...p_k^{x_k}\)
8.1
\(np_i\) \(np_i(1-p_i)\)