B Probability distributions
Name | parameters | support | pdf/pmf | mean | variance |
---|---|---|---|---|---|
Bernoulli | \(p \in [0,1]\) | \(k \in \{0,1\}\) | \(p^k (1 - p)^{1 - k}\) 1.12 |
\(p\) 7.1 |
\(p(1-p)\) 7.1 |
binomial | \(n \in \mathbb{N}\), \(p \in [0,1]\) | \(k \in \{0,1,\dots,n\}\) | \(\binom{n}{k} p^k (1 - p)^{n - k}\) 4.4 |
\(np\) 7.2 |
\(np(1-p)\) 7.2 |
Poisson | \(\lambda > 0\) | \(k \in \mathbb{N}_0\) | \(\frac{\lambda^k e^{-\lambda}}{k!}\) 4.6 |
\(\lambda\) 7.3 |
\(\lambda\) 7.3 |
geometric | \(p \in (0,1]\) | \(k \in \mathbb{N}_0\) | \(p(1-p)^k\) 4.5 |
\(\frac{1 - p}{p}\) 7.4 |
\(\frac{1 - p}{p^2}\) 9.3 |
normal | \(\mu \in \mathbb{R}\), \(\sigma^2 > 0\) | \(x \in \mathbb{R}\) | \(\frac{1}{\sqrt{2 \pi \sigma^2}} e^{-\frac{(x - \mu)^2}{2 \sigma^2}}\) 4.12 |
\(\mu\) 7.8 | \(\sigma^2\) 7.8 |
uniform | \(a,b \in \mathbb{R}\), \(a < b\) | \(x \in [a,b]\) | \(\frac{1}{b-a}\) 4.9 |
\(\frac{a+b}{2}\) | \(\frac{(b-a)^2}{12}\) |
beta | \(\alpha,\beta > 0\) | \(x \in [0,1]\) | \(\frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{\text{B}(\alpha, \beta)}\) 4.10 |
\(\frac{\alpha}{\alpha + \beta}\) 7.6 | \(\frac{\alpha \beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}\) 7.6 |
gamma | \(\alpha,\beta > 0\) | \(x \in (0, \infty)\) | \(\frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha - 1}e^{-\beta x}\) 4.11 |
\(\frac{\alpha}{\beta}\) 7.5 |
\(\frac{\alpha}{\beta^2}\) 7.5 |
exponential | \(\lambda > 0\) | \(x \in [0, \infty)\) | \(\lambda e^{-\lambda x}\) 4.8 |
\(\frac{1}{\lambda}\) 7.7 |
\(\frac{1}{\lambda^2}\) 7.7 |
logistic | \(\mu \in \mathbb{R}\), \(s > 0\) | \(x \in \mathbb{R}\) | \(\frac{e^{-\frac{x - \mu}{s}}}{s(1 + e^{-\frac{x - \mu}{s}})^2}\) 4.13 |
\(\mu\) | \(\frac{s^2 \pi^2}{3}\) |
negative binomial | \(r \in \mathbb{N}\), \(p \in [0,1]\) | \(k \in \mathbb{N}_0\) | \(\binom{k + r - 1}{k}(1-p)^r p^k\) 4.7 |
\(\frac{rp}{1 - p}\) 9.2 |
\(\frac{rp}{(1 - p)^2}\) 9.2 |
multinomial | \(n \in \mathbb{N}\), \(k \in \mathbb{N}\) \(p_i \in [0,1]\), \(\sum p_i = 1\) | \(x_i \in \{0,..., n\}\), \(i \in \{1,...,k\}\), \(\sum{x_i} = n\) | \(\frac{n!}{x_1!x_2!...x_k!} p_1^{x_1} p_2^{x_2}...p_k^{x_k}\) 8.1 |
\(np_i\) | \(np_i(1-p_i)\) |